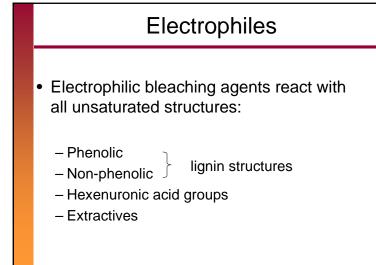
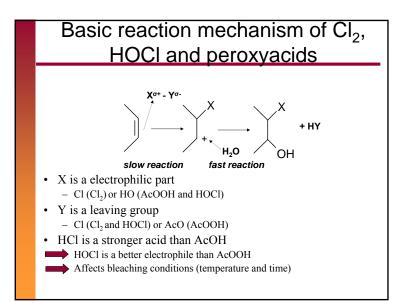
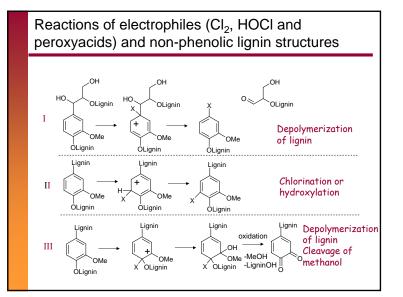


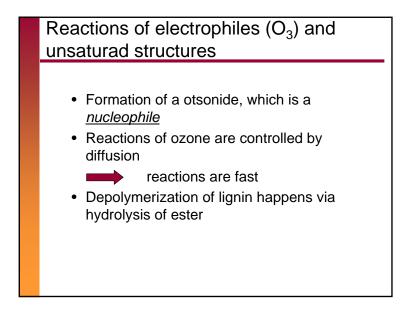
Bleaching	agents
-----------	--------

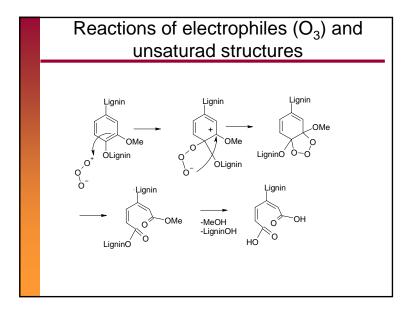
<u>Designation</u>	Bleaching agent	<u>Formula</u>
С	Chlorine	Cl ₂
0	Oxygen	O ₂ (HO ⁻ , HOO ⁻)
D	Chlorine dioxide	ClO ₂ (Cl ₂ , HOCl, ClO ⁻)
Z	Ozone	O ₃ (H ₂ O ₂)
Р	Peroxide	HO ₂ ⁻ (HO ⁻)
Paa	Peracetic acid	АсООН
Е	Alkali (extraction)	HO-
Х	Enzyme	xylanase
А	Acid	H ₃ O ⁺
Q	Chelant	EDTA, DTPA

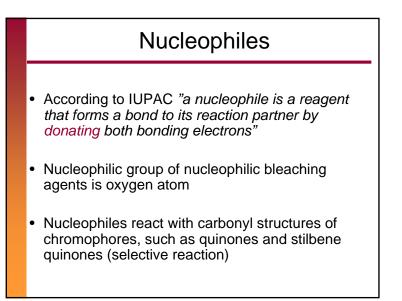

Electrophiles

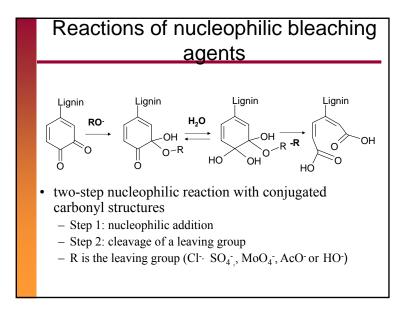

- According to IUPAC "an electrophile is a reagent that forms a bond to its reaction partner by accepting both bonding electrons from that reaction partner"
- Main electrophilic bleaching agents are

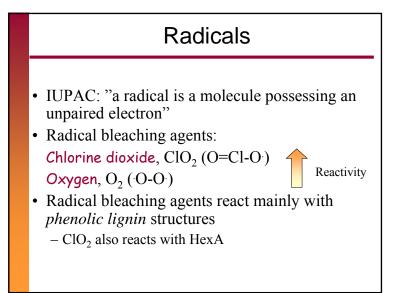

 chlorine (Cl₂), hypochlorous acid (HOCl), peracetic acid (HOOAc) and ozone (O₃)

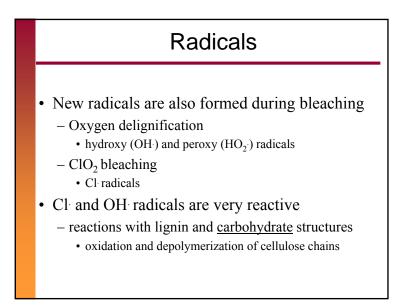

hypochlorous acid = alikloorihapoke

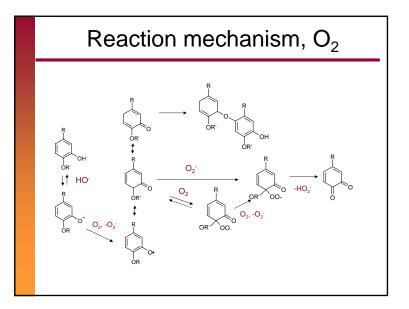

			1 -		eachin
			agents		
		Compound	Charge distribution	Leaving group	Acid
	\land	O ₃	+O-O-O-		
4		Cl ₂	Cl ^{δ+} -Cl ^{δ-}	Cl-	HC1
	Reactivity	HOCl	HO ^{δ+} -Cl ^{δ-}	Cl-	HC1
	ctiv	HOOMoO ₃ -	$HO^{\delta^+}-\delta^-OMoO_3^-$	MoO ₄ ²⁻	HMoO ₄ -
		HOOSO ₃ -	$HO^{\delta +} - \delta - OSO_3^-$	SO4 ²⁻	HSO ₄ -
	Ì	HOOAc	HO ^{δ+} -δ-OAc	AcO-	AcOH



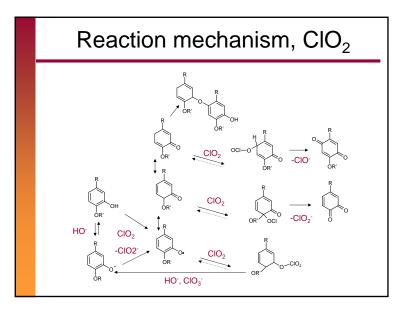


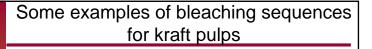






	agent	S	
Bleaching agent		Leaving group	
Hypochlorite	ClO-	Cl-	
Peroxyacids	HOOSO ₃ -	SO4-	4
	HOOMoO ₃ -	MoO ₄ -	Reactivity
	HOOAc	AcO-	tivity
Hydrogen peroxide	H ₂ O ₂	HO-	





Auxiliary bleaching chemicals		
Chemical	Function	
ACID	Acid hydrolysis of HexA	
ALKALI	Solubilize lignin residue after acid stage	
CHELANT	Removal of transition metals (Cu, Fe, Mn) which degrade peroxides	
XYLANASE ENZYME	Degradation of LC complexes on the surface of fibres	

Bleaching sequences

- A single bleaching treatment or stage is not sufficient to remove all chromophores from pulp ⇒ bleaching sequence
- Order and type of bleaching stages has an effect on
 - consumption of bleaching chemicals
 - amount of organic material dissolved during bleaching

- Conventional sequences
 - $-C_{D}$ -EO-D-E-D
 - C-E-D-EP-D
- Elemental Chlorine Free (ECF)
 - O-D-E₀-D-E-D
 - D-E_o-D-E-D
- Total Chlorine Free (TCF)

– O-A-Z-Q/P-Paa

Bleaching sequences

• Which one of these bleaching sequences is better and why?

b)
$$O - Z - A - Q/P - Paa$$