

Classification of bleaching agents

RADICALS	ELECTROPHILES NUCLEOPH	
O_2	Cl ₂	HO ₂ - (H ₂ O ₂)
ClO ₂	HOCI	ClO-
	O ₃	(Peroxyacids)
	Peroxyacids	

Peracids

- Peracids in pulping and bleaching (in mill or pilot scale production)
 - Peracetic acid (Paa) CH₃CO₃H
 - Performic acid (Pfa) HCO₃H
 - Caro's acid (Caa) H₂SO₅
- Laboratory scale pulp bleaching
 - Peroxypropionic acid CH₃CH₂CO₃H

3

- Peroxybezoic acid C₆H₅CO₃H
- Peroxonitric acid HNO₄

Peracids in water solution In water solution peracids dissociate: $RCOOOH + H_2O \implies RCOOO^- + H_3O^+$

values for acid	s and	corresponding pera	icids:
₂H:	3.8	HCO₃H:	7.1
CO₂H:	4.7	CH ₃ CO ₃ H:	8.2
D₄:	-3	H₂SO₅:	9.4
·4·	-3	п ₂ 30 ₅ .	5.

 \rightarrow Peracids are relatively weak acids ("high" pH is required to ionize peracids)

Comparison of peracids

- Properties of the leaving group affect the electrophilicity and reactivitity of peracids: H₂SO₅ > HCOOOH > CH₂COOOH
- H₂SO₅ is more electrophilic and it favours aromatic ring hydroxylation (reaction 1)
- CH₃COOOH is more nucleophilic and therefore it favours oxidative ring cleavage (reaction 3)

Lignin after Paa bleaching

- The structure of residual lignin changes during the peracetic acid bleaching.
- Residual lignin consists of higher amounts of phenolic hydroxyl groups.
- The amount of acid groups is increased which improves the hydrophilicity of lignin.
- Due to the cleavage of side chains the molecular mass of residual lignin is decreased which further improves the hydrophilicity.
- → Due to Paa treatment the residual lignin is more easily removed in next bleaching sequences.

11

Reactions with carbohydrates

- Peracids are very selective chemicals and carbohydrate yield loss is limited
- However:
 - Transition metal catalysed decomposition of Paa may produce harmful radicals (e.g. hydroxyl radicals) which cause the degradation of carbohydrates
 - Low pH may lead to acid hydrolysis and degradation of carbohydrates
- Peracids react easily with reducing end groups of carbohydrates
- → high amounts of Paa could be consumed, however the amount of reducing end groups in pulp is relatively low

10

Reactions with carbohydrates hexenuronic acid groups Peacids react easily with hexenuronic acid groups An intermediate product (5-oxohexuronic acid) is formed in the reaction. Peracids can further react with this intermediate product. As a result formic acid is formed. Reaction consumes considerable amounts of peracids and therefore it is advisable to remove HexA prior to the Paa- stage. The reaction is much faster in neutral pH than in low pH (HexA dissociated).

MILOX-process

- The pulp is more easily bleached in than kraft pulp since the pulp contains minor amounts of condensed lignin structures.
- In addition lignin contains reactive phenolic hydroxyl groups.
- Due to acidic condition the hemicellulose yield is low in Milox process.
- Silica does not disturb the process (unlike in kraft process)

21