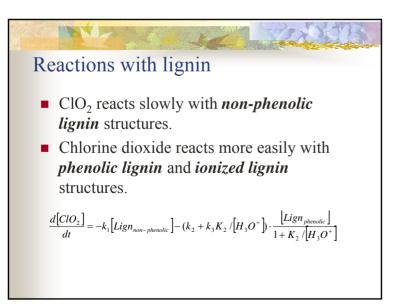
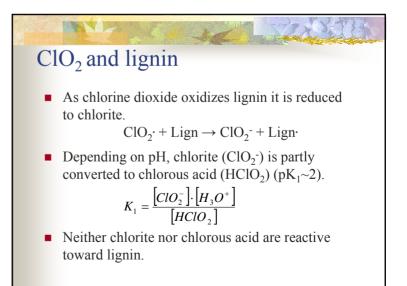

Chlorine dioxide as a bleaching agent

- ClO_2 is a radical bleaching agent
- ClO₂ is manufactured by several methods:
 - Mathiesson process
 - R3/SPV generator
 - Etc.

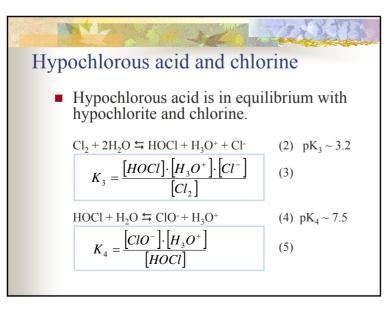
- ClO₂ is an unstable gas and therefore it must be stored in solution.
 - 7-10 g/l solution water
- Less AOX load than in chlorine bleaching, although there is chlorine present also in chlorine dioxide bleaching.

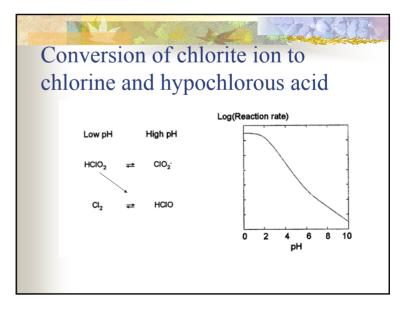


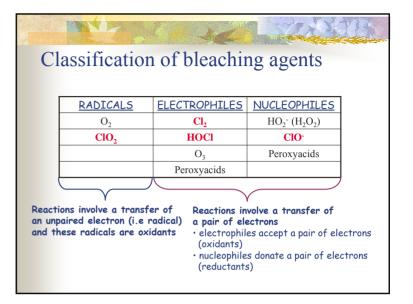


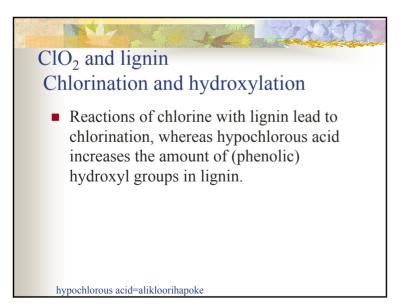
Chlorine dioxide as a bleaching agent

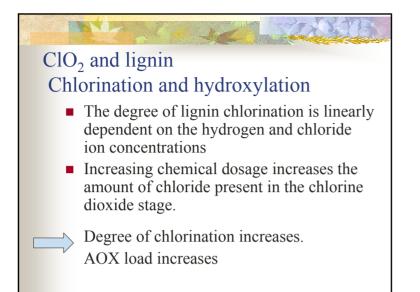
- ClO₂ is an oxidant and it is reduced during bleaching reactions.
- Chemistry of chlorine dioxide bleaching is complex since due to the reduction there are several intermediates present during the process:


ClO ₃ - ClO ₂ ClO ₂ - HClO Cl ₂ Cl ⁻	(+5) (+4) (+3) (+1) (0) (-1)
CI	(-1)
	CIO_2 CIO_2^- HCIO CI_2



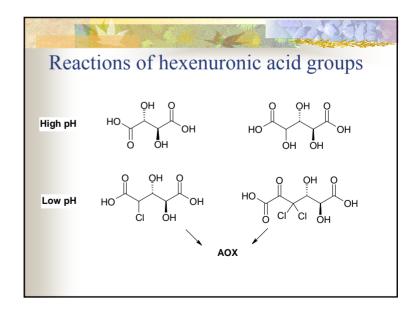

CIO₂ decomposition In acidic conditions chlorite is decomposed via formation of chlorous acid. Reaction is partly catalyzed by chloride ions. d[ClO₂]/dt = -k₄[HClO₂]² - k₅[HClO₂] · [Cl⁻] (1) Maximum rate at pH 2-3 The reaction is followed by several other reactions




ClO₂ and lignin

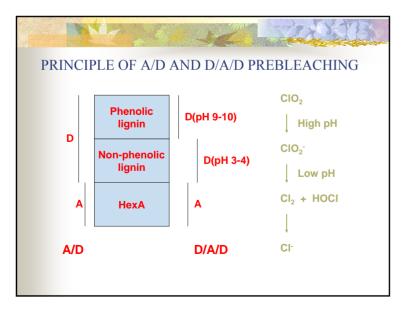
- Both electrophiles (HOCl, Cl₂) and nucleophiles (ClO⁻) are formed during the chlorine dioxide bleaching stages.
- The final pH of D₀ stage is typically 2-3 and ClO₂ exists mainly as chlorine. During other D stages the final pH is so high (4-5) that the proportion of chlorine is low.

	1 . T. SZ	2000
ClO_2 and lignin		
Chlorination and hydroxylation		
	$\frac{d[Lign_{Cl}]}{dt} = k_6[Lign] \cdot [Cl_2]$	(6)
(6)+(7)	$\frac{d[Lign_{OH}]}{dt} = k_7 [Lign] \cdot [HOCl]$	(7)
	$\frac{d[Lign_{Cl}]}{d[Lign_{OH}]} = \frac{k_6[Cl_2]}{k_7[HOCl]}$	(8)
Or also	$\frac{d[Lign_{Cl}]}{d[Lign_{OH}]} = \frac{k_6 [H_3 O^+] \cdot [Cl^-]}{k_7 K_3}$	(9)

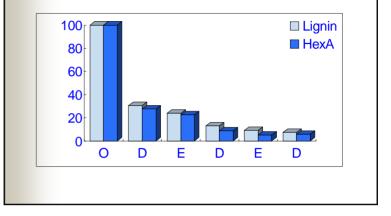


ClO₂ and lignin Chlorination and hydroxylation

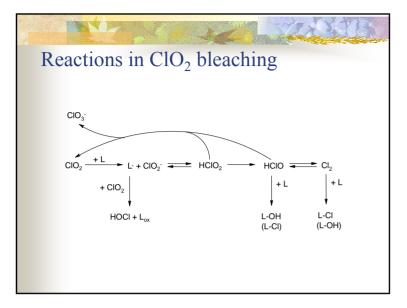
- High final $pH \rightarrow$ better bleachability
- The degradation of chlorite sets the limit for pH, if the final pH is >5, part of the oxidizing potential remains unused.


ClO₂ and HexA

- ClO_2 is a very selective lignin oxidant.
- Reactions with carbohydrates are limited.
- Hypochlorous acid and chlorine oxidize hexenuronic acid groups of xylan.
- Degradation products of HexA are chlorinated and hydroxylated dicarboxylic acids.


Reactions of hexenuronic acid groups

- Chlorine and hypochlorous acid react first with electrophilic carbon-carbon double bonds.
- Chlorine dioxide does not oxidize hexenuronic acid groups.
- In a normal chlorine dioxide stage both lignin and HexA contents decrease in a same way. If the final pH is above 6, HexA doesn't react because under these conditions chlorite is not able to degrade into hypochlorous acid and chlorine.


REMOVAL OF LIGNIN AND HEXENURONIC ACID IN AN ECF BLEACHING STAGE

17 2

ClO₂ and extractives Chlorine dioxide reacts with unsaturated lipophilic extractive (i.e. resin) components.

- ClO₂ favours oxidation reactions. The reaction products of resin comprise a mixture of oxidized products containing hydroxyl, carboxyl or carbonyl groups.
- The reaction products are more hydrophilic than the original compounds and therefore they are easier to wash out of the pulp.

