

Fibre engineering

 Fibre engineering describes any practical, controllable act of making a positive change in the fine structure of a fibre for its end use.

Sorption of CMC on pulp fibres

- CMC, carboxymethylcellulose, is an anionic polymer
- CMC has similar chain conformation than cellulose
- → enabling association with cellulose microfibrils
- → more charged groups on the fibre surface
- CMC is not able to penetrate into the cell wall
 → sorption on fibres (e.g. ECF spruce kraft pulp fibres)
- CMC on fibres increases water sorption (and water retention value, WRV)
- The amount of sorbed CMC increases with the beating level

Sorption of CMC on pulp fibres

Beating	СМС	WRV	WRV(g/g)
(<i>rev</i> .)	(% on pulp)	(g / g)	Untreated
-	0.52	1.70	1.33
4000	4.18 ^a	2.04	
4000	7.26 ^a	2.08	
1000	0.63	1.96	1.55
2000	0.78	3.45	1.64
4000	0.94	5.36	1.77
7000	0.87	8.21	2.07
DP 70	0-800, ^a low DP		
pH 12.	.5		

Sorption of CMC on pulp fibres Confocal laser scanning microscopy (CLSM) revealed the external gelated structure of beaten and CMC treated fibres As a result strong interfibre bonding denser sheets were obtained Sheet properties of pulps treated with electrolyte solution and CMC: Decreased density Improved bonding properties (bonding ability and tensile strength)

Sorption of xylan on cellulose fibres A large amount of hemicelluloses are dissolved from the cell wall during the initial stage of kraft pulping As a result of endwise peeling, glucomannans are largely depolymerized and dissolved A fraction of xylans are dissolved as polymers during kraft pulping DP 50-100 Dissolved xylans can be resorbed on fibres

Summary

- Fibre engineering involves modification of the fine structure of fibres in order to improve fibre properties for the end use
- External surface structure of pulp fibres can be tailored with polymeric compounds, such as CMC, that are unable to penetrate into the cell wall
- → interfibre bonding is increased
- → sheet strength is increased

20

Summary

- A part of dissolved xylan polymers can be sorbed back on the cellulose fibres
- \rightarrow increased intrafibre or interfibre bonding

21