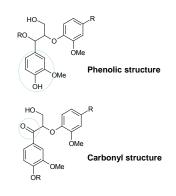
## Lignin reactions in the initial stage of delignification


Reactions of phenolic and carbonyl structures

27/01/2005

Disintegrate fibres High yield REACTION KINETICS initial, bulk and residual delignification Pulping conditions Temperature Phenolic structures Carbonyl structures Sulphate pulping, delignification Lignin Non-phenolic structures Bulk delignification LC complexes Peeling Initial delignification Hydrolysis of esther Peeling Bulk delignification Generation of HexA **Polysaccharides** Hydrolysis of glycosidic linkages Hemicelluloses Cellulose LC linkag 27/01/2005 Extractives

## Initial stage of kraft pulping

- Pulping chemicals: NaOH and Na<sub>2</sub>S
  - Nucleophilic reactions
    - OH and HS ions
- · Initial delignification
  - · impregnation phase
  - temperature < 140 C</li>
     HS ion concentration
  - HS ion concentration important
- Reactions:
  - Phenolic and carbonyl structures react
  - 20 % of lignin degrades due to these reactions in the initial stage



27/01/2005

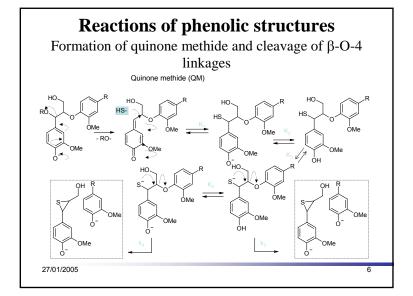
3

## Reactions of phenolic structures

- Main linkages between phenylpropane units of lignin are aryl ether linkages
  - Dominant types are  $\alpha$  O 4 and
    - $\beta O 4 (50 70\%)$
- The main reaction of phenolic lignin structures in the alkaline media involves formation of quinone methide and cleavage of  $\beta$ -O-4 linkages

27/01/2005

cleavage=lohkeaminen; quinone methide=kinonimetidi; thiol=


1

#### Reactions of phenolic structures

- Reaction of phenolic structures start by elimination of  $\alpha$ -substituent (hydroxide or phenoxide ion [also known as cleavage of  $\alpha$ -aryl ether,  $\alpha$ -O-4, linkage])
  - => Formation of quinone methide (QM)
- HS ions react with the quinone methide to form a thiol structure (mercaptide)
- Cleavage of beta aryl ether (β-O-4) linkages

27/01/2005

5



### **Reactions of phenolic structures**

Reaction 1:  $K_1 = [1] / ([QM][HS^-])$  (1)

Reaction 2:  $K_2 = [1] / ([2] [HO^-])$  (2)

Reaction 3:  $K_3 = [3] / ([2] [HO^-])$  (3)

Reaction 4:  $K_4 = [4] / ([3] [HO^-])$  (4)

[3] =  $K_1K_3[QM][HS^-]/K_2$  (5)

 $[4] = K_1K_3K_4[QM][HS-][HO-]/K_2$  (6)

Rate of reaction (cleavage of  $\beta$  – O – 4 bond) =  $-k_3K_1K_3[QM]$  [HS-] /  $K_2$  –  $k_4K_1K_3K_4[QM]$  [HS-] HO-] /  $K_2$  (7)

27/01/2005

Reactions of phenolic structures

Concurrent reactions

Quinone methide structure can also undergo other reactions:

- Elimination of a proton (bimolecular reaction) or a formaldehyde (intramolecular reaction); ionization of y- hydroxyl group)

 $\Rightarrow$  formation of enol ethers

27/01/2005

2

## Reactions of phenolic structures Concurrent reactions

Rate of concurrent reaction:

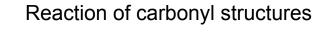
$$K_5 = [5]/([QM][HO^-])$$

Rate = 
$$-k_{QM}[QM][HO^{-}]-k_{5}K_{5}[HO^{-}][QM]/(1 + K_{5}[HO^{-}])$$

- ⇒Rate of reaction depends on
  - HO- concentration
  - degree of ionization of γ- hydroxyl group

27/01/2005

9


### Reactions of carbonyl structures

- Native lignin consists of α-carbonyl and coniferyl aldehyde structures
- Nucleophiles can form addition products with carbonyl structures

27/01/2005

11

# Effect of [HO-] on cleavage of β-O-4 linkages and formation of enol ethers Log (rate of reaction) Reaction Log (rate of reaction) 8 9 10 11 12 13 14 pH 27/01/2005 Cleavage of β-O-4 (β-aryl ether) linkages (solid line) 10 and the formation of enol ethers (dashed line)



HS- HO 
$$_{OMe}$$
  $_{OMe}$   $_{O$ 

#### Reaction of carbonyl structures

• An addition reaction of HS- to  $\alpha$ -carbonyl structure:

Rate constants:

$$K_1 = [2]/([1][HS^-])$$

 $K_2 = [3]/[2]$ 

Rate = 
$$-k[3] = -kK_1K_2[1][HS^-]$$

27/01/2005

3

## SUMMARY: Reaction of lignin in pulping (Initial stage)

#### I Reactions of phenolic structures

- Formation of quinone methide
- Addition of nucleophiles
- Ionisation of  $\alpha$  substituent (HS)
- Cleavage of β-O-4 linkages

27/01/2005 14

## Possible reactions of phenolic structures Nucleophilic attack lonisation and addition (HS') (HO') HO HO OME Lonisation (HO') Phenolic lignin structure Quinone methide intermediate

# Reactions of carbonyl structures nucleophilic attack and addition (HS' ion) - Addition of nucleophiles - Ionisation of addition group (HS) - Cleavage of β-O-4 linkages