Formation of hexenuronic acid groups of xylan

Hexenuronic acid groups

- Alkaline cooking liquor is able to ionize carboxylic acid groups
- the main part of the anionic groups of kraft pulp consist of hexenuronic acid groups of xylan

Carboxyl groups of conventionally cooked kraft pulp

κ =25,9	METHOD	INFORMATION	COOH (mmol/kg)
	Potentiometric	Carboxylic acids	85
	titration	uronic acids of xylan	68
		carboxyl acids of lignin	17
	Polyelectrolyte	Net charge (M _w =8000)	100
	titration	Surface charge(M _w =2000)	30
	Entsymatic hydrolysis	Uronic acids of xylan	60
		HexA	47
		MeIdoA	2
		MeGlcA	11

(Vuorinen et al., Hiilihydraatit prosessiteollisuudessa, Teknologiaohjelmaraportti 9/96)

Formation of hexenuronic acid groups

- Step 1:
 - alkali-catalyzed demethoxylation of 4-O-methylglucuronic acid groups of xylan in the initial delignification phase
 - cleavage of methanol units continues in the bulk delignification stage
 - ⇒formation of hexenuronic acid groups (HexA)
- Step 2:
 - cleavage of hexenuronic acid groups of the polysaccharide chain in the bulk delignification

Rate of reaction

• Formation and degradation of HexA:

d[HexA]/dt =
$$k_I$$
[HO-][MeGlcA]- k_2 [HO-][HexA] (1)
where [MeGlcA] is concentration of 4-O-
methylglucuronic acid

- $=> [\text{HexA}] = [\text{MeGlcA}]_0 k_I (e^{-kI[\text{HO-}]t} e^{-k2[\text{HO-}]t}) / (k_2 k_I)$ (2)
- rate constants k_1 and k_2 are dependent on the ion concentration

Formation of hexenuronic acid groups

Mechanism for the reaction

- Formation of a HexA group is based on collision of two anions
- Electrical repulsion lowers the rate of reaction Rate of reaction is dependent on the electrolyte concentration
- Debye-Hückel equation describes the effect of electrolyte concentration

Debye-Hückel equation:

$$\log(k/k_0) = 2Az_A z_B \mu^{1/2}$$
 (3)

where k_o is rate constant in zero electrolyte

concentration

A Debye-Hückel constant (0,51 M^{-1/2} at 25°C)

 z_A, z_B charge numbers of ions μ electrolyte concentration

• in practice the equation (3) can be presented as:

$$\log(k/k_0) \sim \mu^{1/2} \tag{4}$$

Effect of [HO⁻] and electrolyte concentration on formation of HexA

Formation of HexA during pulping

Effect of cooking method on the amount of uronic acid groups in xylan

- Cooking method has a effect on the structure of xylan (Table 2)
 - especially the amount of uronic acid group
- Cooking method also affects the total amount of xylan in pulp

Table 2. (Vuorinen et al., Hiilihydraatit prosessiteollisuudessa, Teknologiaohjelmaraportti 9/96)

Cooking method	Kappa number	Amount of xylan (%)	Uronic acid (mol/ 100 mol of xylose)
Conventional kraft	24,2	9,0	8,7
SuperBatch	11.8	6.7	1 7

Importance of hexenuronic acid • HexA consists of doubly bonded carbons

- As observed earlier also lignin contains these -C=C-
- Kappa number is often used for indication of the lignin content
- The method is based on the consumption potassium permanganate by lignin
- · However permanganate reacts with all unsaturated hydrocarbons (-C=C- structures)
- Therefore the kappa number expresses the amount of lignin and hexenuronic acid in pulp

Influence of hexenuronic acid groups on pulping and bleaching

- Hexenuronic acid groups:
 - consume certain bleaching chemicals
 - ClO₂, O₂, Cl₂, HOCl and peroxyacids
 - · increased bleaching costs
 - · environmental aspect
 - bind heavy metal ions
 - · Cu, Fe and Mn
 - ⇒degradation of peroxides in bleaching
 - cause colour reversion of pulps

Removal of HexA:

- Hexenuronic acid groups can be removed by selective hydrolysis
- Subject will be discussed more in the Lecture 10

