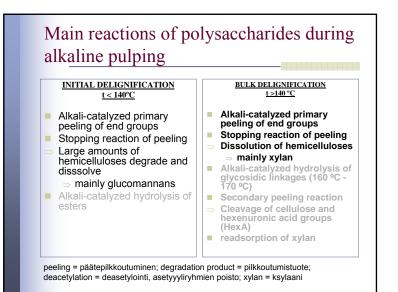
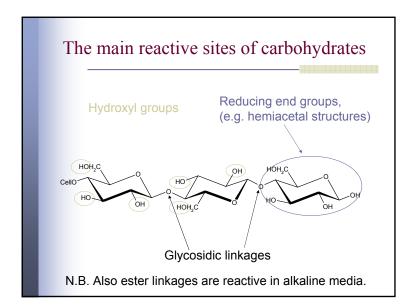
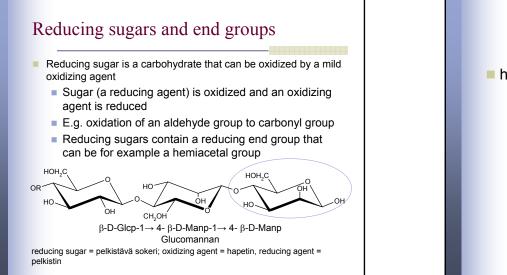

Alkali-catalyzed degradation of the cell wall polysaccharides

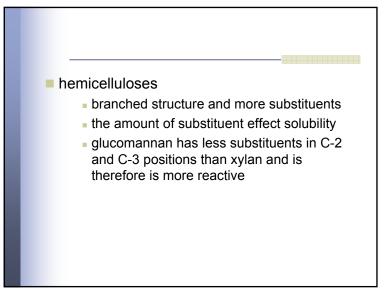
Part I: Primary peeling reactions of reducing end groups

Reactions in pulping


- Aim of kraft pulping is to remove lignin and disintegrate fibres
- However <u>selectivity</u> of kraft pulping is low
 - alkaline pulping solution attacks polysaccharides
 - degradation of polysaccharide chains
 - lost of yield

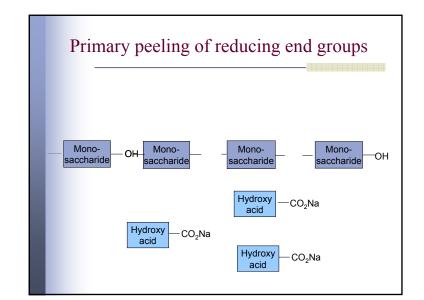



Reactions of the polysaccharides during pulping

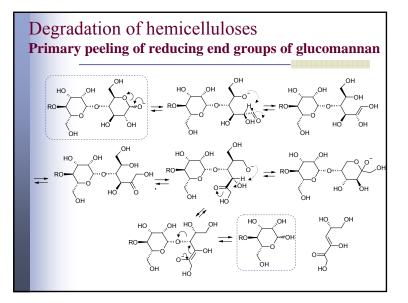

- 20-30 % of the polysaccharides degrade during pulping
- The reactivity of polysaccharides depends on the supramolecular and chemical structure
 - cellulose is more stable than hemicelluloses
 - cellulose has crystalline nature and high degree of polymerization
 - the reactivity of hemicelluloses also differ notably
 - the amount of side chains and substituents

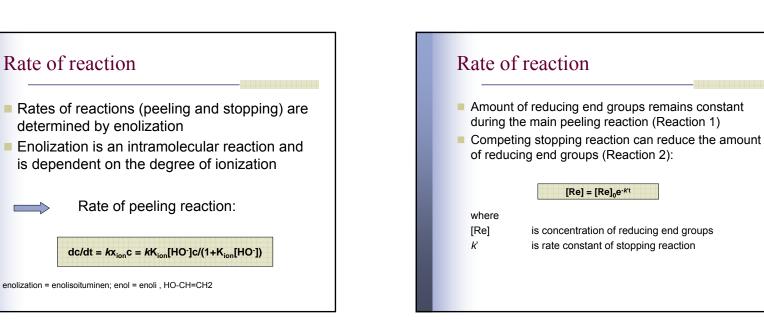
crystalline = kiteinen; heating-up period = nostovaihe; yield = saanto

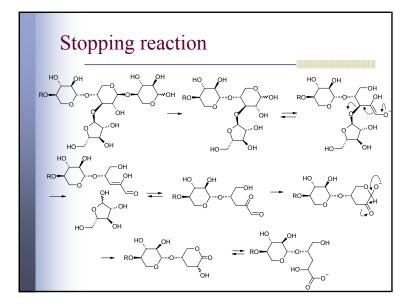
Degradation of polysaccharides Alkaline peeling of reducing end units

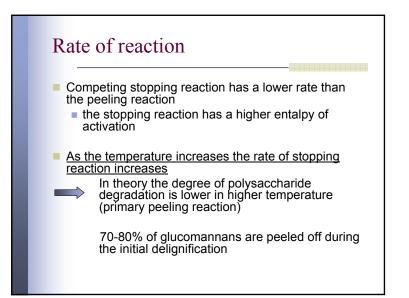

- Alkaline peeling or endwise depolymeration can be defined as elimination of monosaccharide end units from the polysaccharide chain
- In case of 1→4 bonded polysaccharides, like glucomannans, the reaction starts with isomerization of a reducing end groups
- 2. After that β -alkoxy elimination takes place
 - cleavage of a monosaccharide unit

isomerization = isomeroituminen, toisiintuminen; reducing end group = pelkistävä pääteryhmä; aldose = aldoosi; ketose = ketoosi; alkoxy = alkoksi-; hydroxycarboxy acid = hydroksi(karboksyylihappo);

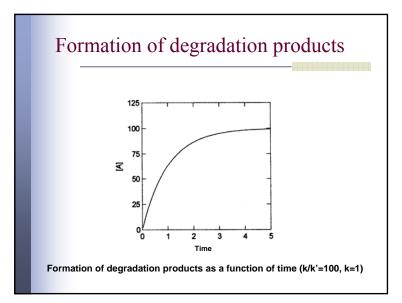

Degradation of polysaccharides Alkaline peeling of reducing end units

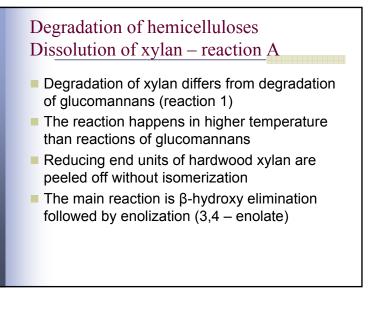

The results of peeling reaction:

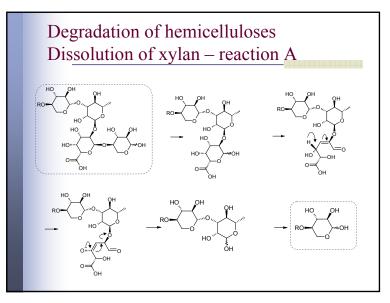

- polysaccharide chain becomes shorter
- formation of a new reducing end group
- soluble degradation products; hydroxy carboxylic acids
- Due to neutralization reactions degradation products consume main part of the alkaline cooking liquor
- Main part of the cooking liquor is consumed in the initial phase of pulping



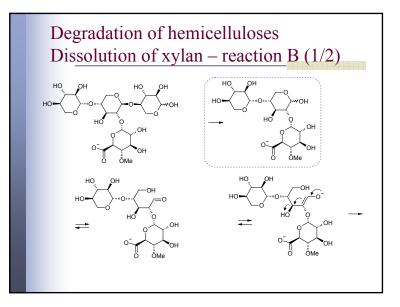
Stopping reaction terminates the degradation of a polysaccharide chain Reaction mechanism: <u>β-hydroxy elimination</u> cleavage of a hydroxyl group from the monosaccharide end unit Formation of alkali-stable end units which prevent peeling reactions carboxylic acid groups

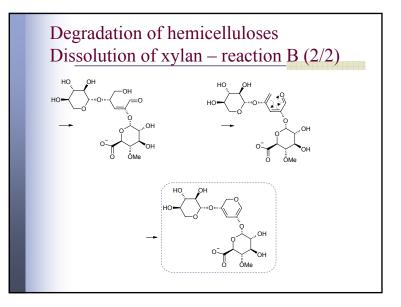






Rate of reaction Degradation products
Formation of degradation products:
$d[A]/dt = k[Re]_0 e^{-kt}$
where[A]is concentration of degradation productskis the rate constant of peeling reaction
[A] = $[\text{Re}]_0(1 - e^{-\kappa t}) k/k'$
k/k' expresses the amount of monosaccharide end units peeled off before the polysaccharide chain stabilizes (order of magnitude 10 ²)
degradation product = pilkkoutumistuote





 Degradation of hemicelluloses Dissolution of xylan – reaction B
 If the reducing end unit contains a 2-O-(4-O-methyl-α-D-glucopyranosyluronic acid) substituent the main reaction is different from reaction A

The main mechanism is a direct β-hydroxy elimination

Degradation of hemicelluloses Dissolution of xylan

- Xylans are more stable against peeling than glucomannans:
 - arabinose side groups in softwood xylan
 - presence of 4-O-methylglucuronic acids in soft wood and hard wood xylans
 - glucomannans don't have substituents at C2 or C3 positions that could retard the peeling reactions
- Reactions of xylan are slower and 40-50 % of xylan is peeled off during pulping

Degradation of hemicelluloses Dissolution of xylan

- Degradation products of xylan are <u>polymers</u>
- Dissolution of xylan polymers is dependent on the porosity of cell wall
 - Large polymers cannot penetrate the cell wall
 - After the degradation of lignin and other hemicelluloses, like glucomannans, porosity of cell wall increases and improves the dissolution of xylan

Degradation products in kraft black liquor (% of total dry matter)

Component	Pine	Birch
Lignin	31	25
Aliphatic carboxylic acid	29	29
Formic acid	6	4
Acetic acid	4	8
Glycolic acid	2	2
Lactic acid	3	3
2-Hydroxybatanoic acid	1	5
3,4-Dideoxypentonic acid	2	1
3-Deoxypentonic acid	1	1
Xyloisosaccharinic acid	1	3
Glucoisosaccharinic acid	6	3
Others	3	3
Other organics	7	9
Extractives	4	3
Carbohydrates (hemicellulose-derived fragments)	2	5
Miscellaneous	1	1
Inorganics	33	33
Sodium bound to organics	11	11
Inorganic compounds	22	22

Summary

- Hydroxyl ion catalyzes the peeling reaction of carbohydrates
- Degree of degradation of hemicelluloses is significant in comparison with celluloses
 - 70-80 % of glucomannans is peeled off during pulping (initial stage)
 - reactions of xylan are slower and 40-50 % of xylan is peeled off during pulping
 - dissolution of xylan is dependent on the porosity of the cell wall