

Hydrolysis can be defined as cleavage by water the mechanism of acid- or base-catalyzed hydrolysis of esters can be presented accordingly:

$$\begin{array}{c} \begin{array}{c} & & \\$$

Rate of reactionAlkali- or base-catalyzed hydrolysis of ester:
 $d[E]/dt = -k_{HO}[E][HO^{-}]$
where [E] is concentration of esterAcid-catalysed hydrolysis of ester:
 $d[E]/dt = -k_{H3O+}[E][H_3O^{+}]$ Total rate of reaction
 $d[E]/dt = -k_{H3O+}[E][H_3O^{+}] - k_{H2O}[E] - k_{HO}-[E][HO^{-}]$

Effects of hydrolysis of esters

Hydrolysis of esters is rapid also in room temperature when pH > 8

- ⇒ hemicelluloses are deacetylated from the moment they are put in contact with alkaline cooking liquor or bleaching agent
- ⇒ cleavage of ester linkages between hemicelluloses and lignin

Alkali-catalyzed hydrolysis of glycosidic linkages

- The mechanism for the reaction is S_N^2 (bimolecular nucleophilic substitution)
- However in this case the nucleophile is an internal nucleophile => intramolecular reaction
- an ionized hydroxy group

*intra*molecular reactions have higher entropy than *inter*molecular reactions as it was observed in lignin depolymerization reactions

Acid-catalyzed hydrolysis of glycosidic linkages

Acid hydrolysis is an important reaction in *sulphite pulping*

Compared with bases acids can easily cleave glycosidic linkages of polysaccharides Reaction mechanism $(S_N 1)$:

- Hydrolysis of glycosidic linkages Rate of reaction
- Alkali-catalyzed reaction: d[G]/dt = $-k_{HO}$.[G⁻] = $-k_{HO}$.K_{ion}[HO⁻][G]/(1+K_{ion}[HO⁻])
- Acid-catalyzed reaction: d[G]/dt = $-k_{H3O+}$ [GH⁺] = $-k_{H3O+}$ K[H₃O⁺][G]

Total hydrolysis (acid, alkali and water-catalyzed): $d[G]/dt = -k_{H30+} K[H_3O+][G] - k_{H20}[G] - k_{H0-}K_{ion}[HO^-][G]/(1+K_{ion}[HO^-])$

